

ANNA UNIVERSITY, CHENNAI

UNDER GRADUATE CURRICULUM (NON-AUTONOMOUS AFFILIATED INSTITUTIONS)

Programme: B.E. Environmental Engineering Regulations: 2025

Abbreviations:

HUM – Humanities (Languages, Management, Heritage, and others)

BS – Basic Science (Mathematics, Physics, Chemistry)

 ES – Engineering Science (General (G), Programme Core (PC), Programme Elective (PE) & Emerging Technology (ET))

SD – Skill Development

SL - Self Learning

CDP – Capstone Design Project

OE – Open Elective

L - Laboratory Course

T - Theory

LIT – Laboratory Integrated Theory

PW – Project Work

IPW – Internship cum Project Work

DIC – Department Introductory Course

TCP – Total Contact Period(s)

Program Outcomes

- 1. **Engineering Knowledge**: Apply math, science, and engineering fundamentals to complex problems.
- 2. **Problem Analysis**: Identify and analyze complex problems using research and sustainability principles.
- 3. **Design Solutions**: Design systems and processes considering health, safety, cost, culture, and environment.
- 4. **Investigations**: Use experiments, modelling, and data analysis to reach valid conclusions.
- 5. **Engineering Tools**: Apply modern tools for modelling and problem-solving, recognizing their limits.
- 6. **Society & Environment**: Assess societal, legal, and environmental impacts of engineering solutions.
- 7. **Ethics**: Commit to ethics, human values, diversity, and legal compliance.

- 8. **Teamwork**: Work effectively as an individual and in multidisciplinary teams.
- Communication: Communicate clearly in reports, presentations, and documentation across diverse groups.
- 10. **Management & Finance**: Apply management and economic principles in projects and teamwork.
- 11. **Lifelong Learning**: Engage in continuous learning, adapt to new technologies, and think critically.

Program Specific Outcomes (PSOs)

- 1. To design, and execute environmental engineering projects related to water supply, wastewater treatment, solid waste management, air pollution control, and environmental impact assessment.
- 2. Utilize modern tools, software, and interdisciplinary knowledge to analyze environmental systems and provide sustainable solutions to emerging global environmental challenges.
- To formulate sustainable engineering solutions for environmental protection, demonstrate research capabilities, work collaboratively in teams, and uphold ethical standards.

		Semester -	-1						
S. No.	Course Code	Course Name	Course Type	Perio Wee	_	Credits	Category		
NO.	Code		туре	L-T- P	TCP				
1.	MA25C01	Applied Calculus	Т	3-1-0	4	4	BS		
2.	CE25C01	Introduction to Civil Engineering	Т	3-0-0	3	3	ES (PC) – DIC		
3.	PH25C01	Applied Physics – I	LIT	2-0-2	4	3	BS		
4.	CY25C01	Applied Chemistry – I	LIT	2-0-2	4	3	BS		
5.	ME25C01	Engineering Drawing	LIT	2-0-4	6	4	ES (G)		
6.	UC25H01	தமிழர் மரபு / Heritage of Tamils	Т	1-0-0	1	1	HUM		
7.	EN25C01	English Essentials – I	Т	2-0-0	2	2	HUM		
8.	CS25C02	Computer Programming: Python	LIT	2-0-2	4	3	ES (PC)		
9.	ME25C04	Makerspace	L	0-0-4	4	2	SD		
10.	UC25A01	Life Skills for Engineers – I		1-0-2	3	1	HUM		
11.	UC25A02	Physical Education – I		0-0-4	4	1	HUM		
12.		NCC / NSS / NSO / YRC							
	Total Credits 39 27								

Semester – II										
S.	Course	Course Name	Course	Perio Wee		Credits	Category			
No.	Code		Type	L-T- P	TCP					
1.	MA25C02	Linear Algebra	Т	3-1-0	4	4	BS			
2.	ME25C02	Engineering Mechanics	Т	3-1-0	4	4	ES (G)			
3.	PH25C02	Applied Physics (CE) - II	Т	2-1-0	3	3	BS			
4.	EE25C01	Basic Electrical and Electronics Engineering	Т	3-0-0	3	3	ES (G)			
5.	CY25C02	Applied Chemistry (CE) – II	Т	2-0-0	2	2	BS			
6.	UC25H02	தமிழர்களும் தொழில்நுட்பமும் / Tamils and Technology	Т	1-0-0	1	1	HUM			
7.	CE25201	Construction Materials and Technology	Т	3-0-0	3	3	ES (PC)			
8.	EN25C02	English Essentials – II	LIT	1-0-2	3	2	HUM			
9.	ME25C05	Re-Engineering for innovation	L	0-0-4	4	2	SD			
10.	UC25A03	Life Skills for Engineers – II		1-0-2	3	1	HUM			
11.	UC25A04	Physical Education – II		0-0-4	4	1	HUM			
12.		Foreign Language [^]	LIT	1-0-2	3	1	HUM			
	Total Credits 36 27									

[^] Deutsch / Japanese / Korean

		Semester –	III						
S.	Course	Course Name	Course	Periods /Week		Credits	Category		
No.	Code	332.337.43	Type	L-T- P	TCP	3.000			
1.		Computational Differential Equations	Т	3-1-0	4	4	BS		
2.		Introduction to Environmental	т	3-0-0	3	3	ES (PC)		
		Science and Engineering	•	000	- O		LO (1 O)		
3.		Environmental Chemistry	Т	3-0-0	3	3	ES (PC)		
4.		Environmental Microbiology	Т	3-0-0	3	3	ES (PC)		
5.		Surveying	LIT	3-0-2	5	4	ES (PC)		
6.		Skill Development Course I	LIT	1-0-2	3	2	SD		
7.		Environmental Chemistry and Microbiology Laboratory	L	0-0-4	4	2	ES (PC)		
8.		English Communication Skills Laboratory – II	LIT	0-0-2	2	1	HUM		
	Total Credits 27 22								

		Semester -	- IV						
S. No.	Course Code	Course Name	Course Type	Periods / Week		Credits	Category		
140.	Code		Type	L-T- P	TCP				
1.		Energy and Environmental Sustainability	Т	3-0-0	3	3	ES (PC)		
2.		Environmental Legislations and Policies	Т	3-0-0	3	3	ES (PC)		
3.		Water Supply Engineering	Т	3-0-0	3	3	ES (PC)		
4.		Municipal Solid Waste Management	Т	3-0-0	3	3	ES (PC)		
5.		Fluid Mechanics and Machinery	Т	3-1-0	4	4	ES(PC)		
6.		Air and Noise Pollution Control Engineering	LIT	3-0-2	5	4	ES (PC)		
7.		Skill Development Course II	LIT	1-0-2	3	2	SD		
8.		Fluid Mechanics and Machinery Laboratory	L	0-0-4	2	2	ES(PC)		
9.		English Communication Skills Laboratory – III	LIT	0-0-2	2	1	HUM		
	Total Credits 28 25								

		Semester -	- V						
S.	Course	Course Name	Course	Periods /	Week	Credits	Category		
No.	Code	Course Name	Type	L-T- P	TCP	Credits	Category		
1.		Environmental Management Systems	Т	3-0-0	3	3	ES (PC)		
2.		Fate and Transport of Contaminants in the Environment	Т	3-0-0	3	3	ES (PC)		
3.		Wastewater Engineering	Т	3-0-0	3	3	ES (PC)		
4.		Life Cycle Assessment	Т	3-0-0	3	3	ES (PC)		
5.		Programme Elective – I	Т	3-0-0	3	3	ES (PE)		
6.		Programme Elective – II	Т	3-0-0	3	3	ES (PE)		
7.		Skill Development Course - III	Т	2-0-0	2	2	SD		
8.		Industry Oriented Course- I	LIT	1-0-2	3	1	SD		
9.		Environmental Engineering Design and Drawing	L	0-0-4	4	2	ES (PC)		
10.		Water and Wastewater Engineering Laboratory	L	0-0-4	4	2	ES (PC)		
	Total Credits 31 25								
	For Honours Degree								
1.		Capstone Design Project – Level I	CDP	0-0-12	12	6	SD		

	Semester – V									
S.	Course	Course Name	Course	Periods /	Week	Credits	Catogory			
No.	Code	Course Name	Туре	L-T- P	TCP	Credits	Category			
	OR									
1.		Honours Elective – I	Т	3-0-0	3	3				
2.		Honours Elective – II	Т	3-0-0	3	3				
		For Minor De	egree							
1.		Minor Elective – I	Т	3-0-0	3	3				
2.		Minor Elective – II	Т	3-0-0	3	3				

		Semest	er – VI				
S. No.	Course Code	Course Name	Course Type	Perio Wee		Credits	Category
140.	Code		ı ype	L-T-P	TCP		
1.		Industrial Pollution Control and Management	Т	3-0-0	3	3	ES (PC)
2.		Environmental Economics and Financial Accounting	Т	3-0-0	3	3	ES (PC)
3.		Programme Elective – III	Т	3-0-0	3	3	ES (PE)
4.		Programme Elective – IV	Т	3-0-0	3	3	ES (PE)
5.		Open Elective	Т	3-0-0	3	3	-
6.		Instrumental Technique in Environmental Analysis	LIT	3-0-2	5	4	ES (PC)
7.		Engineering Entrepreneurship Development	LIT	2-0-2	4	3	HUM
8.		Industry Oriented Course - II	LIT	1-0-2	3	1	SD
9.		Self-Learning Course	-	-	2	1	
			Tota	l Credits	29	24	
		Courses for He	onours De	gree			
S.	Course	Course Name	Course	Periods/V	Veek		
No.	Code	Course Name	Type	L-T-P	ТСР	Credits	Category
1.		Capstone Design Project – Level II	CDP	0-0-12	12	6	SD
		(0	R)				
1.		Honours Elective – III	Т	3-0-0	3	3	
2.		Honours Elective – IV	Т	3-0-0	3	3	
		Courses for I	Minor Deg	ree			

	Semester – VI									
S. Course No. Code		Course Name	Course	Periods / Week		Credits	Category			
NO.	Code	Code Type		L-T-P	TCP					
1.		Minor Elective – III	Т	3-0-0	3	3				
2.		Minor Elective – IV	Т	3-0-0	3	3				

		Semest	er – VII				
S.	Course	Course Name	Course	Perio Wee	ek	Credits	Category
No.	Code	- Course Hame	Type#	L-T-P	TCP*	Oround	Oategory
1		Environmental Impact Assessment	Т	3-0-0	3	3	ES (PC)
2		Environmental Remote Sensing and GIS	Т	3-0-0	3	3	ES (PC)
3		Biomedical and Hazardous Waste Management	Т	3-0-0	3	3	ES (PC)
4		Environmental, Social and Governance	Т	3-0-0	3	3	ES (PC)
5		Programme Elective - V	Т	3-0-0	3	3	ES (PE)
6		Project Management	Т	2-0-0	2	2	HUM
7		Summer Internship	-	0-0-0	0	1	SD
8		Computer Applications in Environmental Engineering	L	0-0-4	4	2	ES (PC)
			Total	Credits	21	20	
		Courses for H	onours De	gree	•		
S.	Course		Course	Period/	Week Credits		
No.	Code	Course Name	Туре	L-T-P	TCP		Category
1.		Capstone Design Project – Level III	CDP	0-0-12	12	6	SD
		(0	PR)				
1.		Honours Elective – V	Т	3-0-0	3	3	
2.		Honours Elective – VI	Т	3-0-0	3	3	
		Courses for	Minor Deg	ree			
1.		Minor Elective – V	Т	3-0-0	3	3	
2.		Minor Elective – VI	Т	3-0-0	3	3	

	Semester-VIII									
S. No.	Course Code	Course Name	Course Type	Periods L-T-P	/Week TCP	Credits	Category			
1.		Project Work / Internship cum Project Work	PW/IPW	0-0-16	16	8	SD			
	Total Credits				16	8				

PROGRAMME ELECTIVE COURSES - STREAMS

Water Resources Management	Climate Resilience and Energy Systems	Circular Resource Recovery	Smart Built Environment Systems	Environmental Management
Groundwater and Rain water Harvesting	Climate Change and Adaptation	Biochemical and Thermochemical Conversion of Biomass	Public Health Engineering Services in Buildings	IoT/AI Applications in Environmental Management
Design, Operation and Maintenance, Monitoring of Water and Wastewater Treatment Plants	Carbon Vater Vater Utilization and Storage Carbon Natural Resource Management and Accounting Environmental Health, Safety and Risk		Smart Disaster management	
Sludge and Septage Management `	Climatology and Meteorology	Landfill Engg. and Remediation Technology	Planning, Design and Management of Large Housing Complexes	Environmental Management System
Desalination and Marine Pollution Control	Energy Management in Industries	Plastic and E- waste Management	Green Built Environment	Circular Economy
Flood and Drought Management	Solar and Wind Energy System	Environmental Sensitive Urban Design	Climate Resilient Buildings	Urban Stormwater Management
Surface and Groundwater Quality Modeling	Hydrogen energy	Resource Recovery from Waste	Urban Water Infrastructure	Environmental Nanotechnology

Semester - I

MA25C01	Applied Calculus	Ш	T	Ρ	С
	Applied Calculus	3	1	0	4

- To provide technical competence of modelling engineering problems using calculus.
- To apply the calculus concepts in solving engineering problems using analytical methods and computational tools.

Differential Calculus: Functions, graph of functions, New functions from old functions, Limit of a function, Continuity, Limits at infinity, Derivative as a function, Maxima and Minima of functions of single variable, Mean value theorem, Effect of derivatives on the shape of a graph.

Activities: Visualization of the functions, Maxima and Minima of a function using open-source software, Solving of Competitive Examination questions (Ex. GATE).

Functions of Several Variables: Partial derivatives, Chain rule, Total derivative, Maxima and minima of functions of two variables, Method of Lagrange's Multipliers, Application problems in engineering.

Activities: Partial Derivatives with two or three variables, Maxima and Minima of a function using open-source software, Solving of Competitive Examination questions (Ex. GATE).

Integral Calculus: Fundamental theorem of Calculus, Indefinite integrals and the Net Change Theorem, Improper integrals, Arc Length, Area of Region, Area of surface of revolution.

Activities: Definite and Indefinite Integrals, Determination of Area, Solving of Competitive Examination questions (Ex. GATE).

Multiple Integrals: Iterated integrals and Fubini's theorem, Evaluation of double integrals, change of order of integration, change of variables between Cartesian and polar co-ordinates, evaluation of triple integrals-change of variables between Cartesian and cylindrical and spherical co-ordinates.

Activities: Double integrals and triple integrals using open-source software, Solving of Competitive Examination questions (Ex. GATE).

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%.

Assessment Methodology: Assignments (20%), Solution to application-oriented problems using software (20%), Solving of GATE questions (20%), Internal Examinations (40%).

References:

- 1. Anton, H., Bivens, I. C., & Davis, S. (2021). Calculus: Early transcendentals. John Wiley & Sons.
- 2. Ron Larson and David C. Falvo, (2013), Calculus: an Applied Approach. Cengage Learning.
- 3. Stewart, J., Clegg, D., & Watson, S. (2019). Calculus: Early transcendentals.
- 4. Thomas, G. B., Jr., Weir, M. D., Hass, J., & Heil, C. (2018). Thomas' calculus: Early transcendentals. Pearson.
- 5. Singh, K. (2019). Engineering mathematics through applications. Bloomsbury Publishing.
- 6. Grewal, B. S. (2012). Higher engineering mathematics. Khanna Publishers.

E-resources:

- 1. https://math.libretexts.org/Bookshelves/Calculus/Map%3A Calculus Early Transcenden tals (Stewart)/
- 2. https://openstax.org/books/calculus-volume-1/
- 3. https://tutorial.math.lamar.edu/Classes/CalcII/CalcII.aspx
- 4. SCILAB, https://www.scilab.org/

	Description of CO	РО	PSO
CO1	Explain the meaning of derivative, integral, and their geometric and physical interpretations.		
CO2	Apply differentiation and integration techniques to compute maxima, minima, and area.	PO1(3)	PSO1(2) PSO2(2)
CO3	Analyze the behavior of single and multivariable functions using derivatives and partial derivatives.	PO2(3)	PSO1(2) PSO3(1)
CO4	Utilize modern computational software and online platforms to deepen understanding, perform complex calculations, and visualize mathematical concepts.	PO5(2) PO11(1)	PSO2(3) PSO3(1)

CE25C01	Introduction to Civil Engineering	L	Т	Ρ	С
		3	0	0	3

• To impart the significance of the Civil Engineering and provide insight to the essentials of components of infrastructure.

Overview of Civil Engineering: Role of civil engineers in society, Ethics in Civil Engineering Practice, outstanding accomplishments of the profession, future trends- Types of projects, stages of projects, specification and scope.

Fields of Civil Engineering: Overview of Structural, Construction, Geotechnical, Environmental, Transportation, Water Resources and Environmental Engineering – Introduction to Engineering Geology and seismology.

Civil Engineering Materials: Civil Engineering Materials: Bricks – Stones – Sand – Cement – Concrete – Steel – Timber, Glass - Modern Materials, Thermal and Acoustic Insulating Materials, Decorative Panels, Water Proofing Materials. Modern uses of Gypsum, Prefabricated Building components.

Building Components: Building plans – Setting out of a Building - Foundations: Types of foundations - Bearing capacity and settlement – Brick masonry – Stone Masonry – Beams – Columns – Lintels – Roofing – Flooring – Plastering- NBC.

Infrastructure:

Types of Bridges and Dams – Water Supply Network - Rain Water Harvesting – Solid Waste Management system- Introduction to Highways and Railways - Introduction to Green Buildings.

Activities:

An Industrial visit to a nearby Civil Engineering Projects. Seminar / assignment on Emerging Civil Engineering fields.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz (10%), Assignments (40%) and Internal Examinations (50%)

- 1. Ramamrutham, S. (2013). Basic civil engineering. Dhanpat Rai Publishing Co. (P) Ltd.
- 2. Seetharaman, S. (2005). Basic civil engineering. Anuradha Agencies.
- 3. Kumar, S. (2001). Building construction. Standard Publishers.
- 4. Rangwala, S. C. (2009). Building materials (27th ed.). Charotar Publishing House Pvt. Ltd.
- 5. Palanichamy, M. S. (2000). Basic civil engineering. Tata McGraw Hill.

	Description of CO	РО	PSO
CO1	Explain core Civil engineering concepts.		
CO2	Apply basic engineering calculations in Civil Engineering systems.	PO1(3)	PSO1(3) PSO2(1)
CO3	Identify practices followed in infrastructure construction.	PO2(2)	PSO2(2) PSO3(1)

PH25C01	Applied Physics I	L	Т	Р	С
PHZ5CUI	Applied Physics – I	2	0	P 2	3

 To impart knowledge and expose the essentials of physics in various engineering applications.

Properties of Matter: Elasticity, Cantilever, Young's modulus (non-uniform bending), Girders: Bridges and buildings, Viscosity: Stokes method, Surface tension: drop weight method, Thermal expansion, Thermal stress, Bimetallic strips- Expansion joints

Practical: Non-Uniform bending, Young's modulus of the material, Torsional pendulum, Rigidity modulus of the wire and moment of inertia of the disc.

Activities: Virtual demonstration of thermal stress.

Oscillations: Simple Harmonic motion, Torsional pendulum, Couple per unit twist – Damped and Forced Oscillation

Waves: Waves on a stretched string, Energy and Power, standing waves, Ultrasonics, piezoelectric method, Acoustic grating, Electromagnetic waves: Maxwell equation, Production of EM waves by dipole antenna, Propagation of EM waves in free space, wave equation, Cell phone reception

Practical: Melde's string experiment, Frequency of an electrically vibrating metal tip.

Activities: Virtual demonstration of propagation of EM waves

Quantum Mechanics: Black body radiation, Photoelectric effect, de Broglie hypothesis-Schrodinger Wave equation, Particle in a box (infinite potential well - three-dimensional box), Barrier penetration and quantum tunnelling.

Practical: Photo-electric effect, Determination of Planck's constant.

Activities: Virtual demonstration of Scanning Transmission Electron Microscope

Applied Optics: Interference: Air wedge, Michelson's Interferometer, Fiber optics: Structure of a fiber, Fiber Optic Communication System, Fiber Sensors (Virtual demo), Displacement, pressure sensor and Temperature sensor, Einstein Co-efficient, Nd:YAG laser, CO₂ laser (construction, functioning and applications), dye laser

Practical: Ruling width of Compact disc using Laser, Thickness of a thin sheet/wire using Air wedge Method.

Activities: Demonstration of sensors and applications of Lasers

Weightage: Continuous Assessment: 50%, End Semester Examinations: 50%

Assessment Methodology: Quiz (5%), Assignments (20%), Flipped Class (5%), Practical (30%), Internal Examinations (40%)

References:

- 1. Young, H. D., & Freedman, R. A. (2020). University physics with modern physics. Pearson.
- 2. Gaur, R. K., & Gupta, S. L. (2022). Engineering physics. Dhanpat Rai Publications.
- 3. Mathur, D. S. (2010). Elements of properties of matter. S. Chand Publishing.
- 4. Griffiths, D. J. (2018). Introduction to quantum mechanics. Cambridge University Press.
- 5. Silfvast, W. T. (2008). Laser fundamentals. Cambridge University Press

E-resources:

- 1. Barrier penetration problem and Quantum tunnelling: https://archive.nptel.ac.in/courses/115/104/115104096/
- EM waves and wireless channelling: https://onlinecourses.nptel.ac.in/noc24_ee31/preview
- 3. CO2 Laser: https://onlinecourses.nptel.ac.in/noc25_ph03/preview
- 4. Bimetallic Strips https://www.youtube.com/watch?v=WZQ8lvxdzDk
- 5. Cell phone Reception_ https://www.youtube.com/watch?v=1JZG9x_VOwA
- 6. Dipole Antenna_ https://www.youtube.com/watch?v=4xF1Fq2wB1I
- 7. Optical Sensors https://auece.digimat.in/nptel/courses/video/108106173/L02.html
- Scanning Tunnelling Electron Microscope_ https://www.youtube.com/watch?v=XNYZYbXNWQA

	Description of CO	РО	PSO
CO1	Explain the physics concepts in various applications.		
CO2	Apply the principles of wave optics and laser physics in practical systems.	PO1(3)	PSO1(2) PSO2(2)
CO3	Analyse the behaviour of materials under different conditions.	PO2(2)	PSO1(2) PSO3(1)
CO4	Conduct experiments in groups and interpret the data.	PO4(3) PO8(1)	PSO1(2) PSO2(2)

CY25C01	Applied Chemistry	L	Т	Ρ	С
C125C01	Applied Chemistry – I	2	0	P (3

- To provide students with a solid understanding of the chemical principles for engineering applications.
- To introduce the chemical properties of materials and how these properties influence the selection and use of materials in engineering systems.
- To impart practical applications of chemistry in commonly used engineering devices

Water Technology: Water quality parameters and standards. Industrial feed water – Remediation. Municipal water treatment. Desalination.

Practical: Analysis of alkalinity, hardness and dissolved oxygen.

Activity: Coagulation of water sample using Alum

Nano-chemistry: Classification, Size-dependent properties. Preparation of nanomaterials – Top-down and Bottom-Up approaches, Applications (Flipped classroom).

Practical: Preparation of nanoparticles by Sol-Gel method.

Electrochemistry: Electrochemical cell, Electrode potential, Redox reaction. Conductivity of electrolytes – Factors.

Practical: Conductometric titrations

Activity: Electrochemical cell demonstration

Corrosion & Control: Chemical and electrochemical corrosions, galvanic series, factors influencing corrosion, Electrochemical protection. Organic and Inorganic coating.

Practical: Corrosion study by weight loss and salt spray method, Potentiometry/UV-visible spectrophotometer.

Activities: Case Study on Corrosion in Pipelines and Electronics, Control measures for a corroded metal.

Batteries: Conventional, Contemporary and Emerging battery storage technologies, Primary & Secondary Batteries, Battery Pack, Battery Materials, Performance Parameters, Testing, Safety aspects.

Practical: Measurement of EMF, Internal Resistance, Charge and Discharge Characteristics.

Activities: Demonstration of battery pack in e-vehicles.

Weightage: Continuous Assessment: 50%, End Semester Examinations: 50%

Assessment Methodology: Quiz (5%), Assignments (20%), Flipped Class (5%), Practical (30%), Internal Examinations (40%)

References:

- 1. Jain, P. C., & Jain, M. (2015). *Engineering Chemistry* (17th ed.). Dhanpat Rai Publishing Company (P) Ltd.
- 2. Dara, S. S. (2004). A Textbook of Engineering Chemistry. Chand Publications.
- 3. Sachdeva, M. V. (2011). Basics of Nano Chemistry. Anmol Publications Pvt Ltd.
- 4. Friedrich, E. (2014). Engineering Chemistry. Medtech.

E-Resources:

- 1. Water and Wastewater Engineering (Prof. Ligy Philip, IIT Madras) https://nptel.ac.in/courses/105106202.
- Electrochemical Energy Systems (Prof. S. Mitra, IIT Madras) https://nptel.ac.in/courses/113106028.
- 3. Corrosion (Prof. Kallol Mondal, IIT Kanpur) https://nptel.ac.in/courses/112104088
- Chemistry of Battery Systems (Prof. V. R. Marathe, IIT Madras) https://nptel.ac.in/courses/115106130
- 5. Resource on all battery types, testing, and safety https://batteryuniversity.com/articles

	Description of CO	РО	PSO
CO1	Understand the importance of chemistry applications with underlying mechanisms.		
CO2	Apply the chemistry concepts in widely used devices.	PO1(3)	PSO1(2) PSO2(2)
CO3	Analyse the effect of various chemical parameters on performance of engineering systems.	PO2(2)	PSO1(2) PSO2(1)
CO4	Perform experimentations as a group and interpret the results.	PO4(3) PO8(1)	PSO2(2) PSO3(2)
CO5	Communicate findings through case studies and reports	PO9(1)	PSO2(2) PSO3(3)

ME25C01 Engineering Draw	Engineering Drowing	L	Т	Р	С
	Engineering Drawing	2	0	4	4

- To impart knowledge on dimensions and drawing standards.
- To explore the orthographic projection of lines and solids.
- To provide the understanding of orthographic, isometric and perspective views.

Fundamentals: Drawing instruments, Drawing standards (BIS), Lettering in engineering, Sheet layout, elements of dimensioning, Systems of dimensioning. Free hand sketching of 2D & 3D objects, Conics – Ellipse, Parabola and Hyperbola.

Activities: Virtual Demonstration of Conics and Cycloids.

Orthographic Projection: First angle projection, Projection of points, straight lines and planes.

Projection of Solids: Simple Solids, Section of Solids, Development of Surfaces

Activities: Development of models of various solids and virtual demonstration of sectioning, CAD modelling of 2D objects.

Isometric Projection: Isometric Scale, Projection of Simple solids.

Activities: Conversion of 3D into 2D orthographic views, CAD modelling of 3D objects.

Perspective Projection: Simple solids projection

Activities: Virtual demonstration of perspective views.

Project: Development of 2D objects and 3D objects using CAD tools.

Weightage:

Continuous Assessment: 50% End Semester Examinations: 50%

Assessment Methodology:

Project – 10%, Models - 5%, Assignments - 35% and Internal Examinations - 50%

References:

- 1. Natarajan, K. V. (2025). A Text Book of Engineering Graphics. Dhanalakshmi Publisher.
- 2. Venugopal, K., & Prabhu Raja, V. (2022). Engineering Drawing + AutoCAD. New Age International Publishers.

E-resources:

- 1. CAD Software https://www.freecadweb.org/
- 2. Engineering Drawing and Computer Graphics, Prof. Rajaram Lakkaraju (IIT Kharagpur) https://onlinecourses.nptel.ac.in/noc22_me105/preview

3. MIT Design Handbook: Engineering Drawing and Sketching – https://ocw.mit.edu/courses/2-007-design-and-manufacturing-i-spring-2009/pages/related-resources/drawing_and_sketching/

	CO Description	РО	PSO1
CO1	Explain the advantages of engineering drawing in engineering applications		
CO2	Apply the concepts of projections in formulating various solid parts in engineering systems.	PO1(3)	PSO1(2)
CO3	Analyse the various view and interpret the engineering drawings.	PO2(3)	PSO1(2)
CO4	Use CAD tools for creation of various models.	PO3(1)	PSO2(2)
CO5	Critically think and develop innovative models.	PO11(1)	PSO3(1)

UC25H01 தமிழர் மரபு	midlio# iom i	L	Τ	Р	С
0629001	தம்ழர் மர்பு	1	0	0	1

மொழி மற்றும் இலக்கியம்: இந்திய மொழிக் குடும்பங்கள், திராவிட மொழிகள், தமிழ் ஒரு செம்மொழி, தமிழ் செவ்விலக்கியங்கள், சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை, சங்க இலக்கியத்தில் பகிர்தல் அறம், திருக்குறளில் மேலாண்மைக் கருத்துக்கள், தமிழ்க் காப்பியங்கள், தமிழகத்தில் சமண பௌத்த சமயங்களின் தாக்கம், பக்தி இலக்கியம், ஆழ்வார்கள் மற்றும் நாயன்மார்கள், சிற்றிலக்கியங்கள், தமிழில் நவீன இலக்கியத்தின் வளர்ச்சி, தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு.

மரபு – பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை – சிற்பக் கலை:நடுகல் முதல் நவீன சிற்பங்கள் வரை, ஐம்பொன் சிலைகள், பழங்குடியினர் மற்றும் அவர்கள் தயாரிக்கும் கைவினைப் பொருட்கள், பொம்மைகள் , தேர் செய்யும் கலை, சுடுமண் சிற்பங்கள், நாட்டுப்புறத் தெய்வங்கள், குமரிமுனையில் திருவள்ளுவர் சிலை, இசைக் கருவிகள், மிருதங்கம், பறை, வீணை, யாழ், நாதஸ்வரம், தமிழர்களின் சமூக பொருளாதார வாழ்வில் கோவில்களின் பங்கு.

நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: தெருக்கூத்து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, ஓயிலாட்டம், தோல்பாவைக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், தமிழர்களின் விளையாட்டுகள்.

தமிழர்களின் திணைக் கோட்பாடுகள்: தமிழகத்தின் தாவரங்களும், விலங்குகளும், தொல்காப்பியம் மற்றும் சங்க இலக்கியத்தில் அகம் மற்றும் புறக் கோட்பாடுகள், தமிழர்கள் போற்றிய அறக்கோட்பாடு, சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும், சங்ககால நகரங்களும் துறை முகங்களும், சங்ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி, கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி.

இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு: இந்திய விடுதலைப்போரில் தமிழர்களின் பங்கு, இந்தியாவின் பிறப்பகுதிகளில் தமிழ்ப் பண்பாட்டின் தாக்கம், சுயமரியாதை இயக்கம் இந்திய மருத்துவத்தில், சித்த மருத்துவத்தின் பங்கு, கல்வெட்டுகள், கையெழுத்துப்படிகள், தமிழ்ப் புத்தகங்களின் அச்சு வரலாறு.

- தமிழக வரலாறு, மக்களும் பண்பாடும், கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ், முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி, வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை, ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

UC25H01	Heritage of Tamils	L	Т	Р	С
UCZSHUT		1	0	0	1

Language and Literature: Language Families in India, Dravidian Languages, Tamil as a Classical Language, Classical Literature in Tamil, Secular Nature of Sangam Literature, Distributive Justice in Sangam Literature, Management Principles in Thirukural, Tamil Epics and Impact of Buddhism & Jainism in Tamil Land, Bakthi Literature Azhwars and Nayanmars, Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan.

Heritage - Rock Art Paintings to Modern Art - Sculpture: Hero stone to modern sculpture, Bronze icons, Tribes and their handicrafts, Art of temple car making, Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments, Mridhangam, Parai, Veenai, Yazh and Nadhaswaram, Role of Temples in Social and Economic Life of Tamils.

Folk and Martial Arts: Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leatherpuppetry, Silambattam, Valari, Tiger dance, Sports and Games of Tamils.

Thinai Concept of Tamils: Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature, Aram Concept of Tamils, Education and Literacy during Sangam Age, Ancient Cities and Ports of Sangam Age, Export and Import during Sangam Age, Overseas Conquest of Cholas.

Contribution of Tamils to Indian National Movement and Indian Culture:

Contribution of Tamils to Indian Freedom Struggle, The Cultural Influence of Tamils over the other parts of India, Self-Respect Movement, Role of Siddha Medicine in Indigenous Systems of Medicine, Inscriptions & Manuscripts, Print History of Tamil Books

- 1. தமிழக வரலாறு, மக்களும் பண்பாடும், கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும், கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ், முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி, வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் அறை வெளியீடு)
- 4. பொருநை, ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils, The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi, 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)

- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL), Reference Book.

EN25C01 English Essentials — I	L	Т	Р	С
	English Essentials – I	2	0	0

- Enhance learners' listening and speaking skills to understand and deliver speeches effectively
- Equip students with the skills to write clear, coherent, and grammatically correct texts for various purposes.
- Strengthen the ability to comprehend, interpret, and analyse written English across diverse contexts.

Speaking Skills: Self-Introduction (Tenses, Adjectives) Expressing opinions (Subject-Verb Agreement), Participating in Conversations (Speech Acts - agreeing & disagreeing – synonyms and antonyms)

Suggested Activities: Self-Introduction, Just a Minute (JAM) Video recording, Situational role plays, Spell Bee, Word Substitution, Usage of Apps.

Listening Skills: Listening to Simple Conversations (Understanding tone and intent), Short Speeches / Stories, Extracting information, Pronunciation, Listening to Various Accents.

Suggested Activities: Listening and Repeating, Gap fill exercises, Note-taking

Reading Skills: Reading Strategies – (Skimming, scanning, predicting) intensive reading - short passages and long passages on suggested themes (Sentence Patterns, Prefixes and suffixes, idioms and phrases).

Activities: Reading - newspaper and digital articles, Cloze, Reading comprehension, note making and summarising,

Writing Skills: Word Substitution, Sentence Formation, Hints Development (Guided Writing), Writing Different Types of Paragraphs - (Sentence Structure) – Letter Writing / Emails (Informal)

Activities: Error Detection, Picture and poster description, Descriptive, Narrative and Comparative paragraphs, Brainstorming and Mind Mapping - Informal letters/ Emails

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz (10%), Assignments (20%), Speaking Task (10%), Reading Task (10%), Writing Task (10%), Internal Examinations (40%).

- 1. Miller, K. Q., & Wahl, S. T. (2023). Business and Professional Communication: KEYS for Workplace Excellence, SAGE Publications.
- 2. Kumar, Sanjay & Pushpalatha. (2018). English Language and Communication Skills for Engineers. India: Oxford University Press.
- 3. Sharma, S., & Mishra, B. (2024). Communication Skills for Engineers and Scientists, PHI Learning.

E-resources:

- 1. Cambridge English https://www.cambridgeenglish.org/learning-english/grammar-and-vocabulary/
- 2. Perfect English Grammar https://www.perfect-english-grammar.com/
- 3. British Council Learn English https://learnenglish.britishcouncil.org/grammar
- 4. Speechling https://speechling.com/
- 5. mePro by Pearson https://mepro.pearson.com/
- 6. TED Talks https://www.ted.com/

	Description of CO	РО	PSO1
CO1	Listen and comprehend spoken English, take and draft notes.		
CO2	Apply vocabulary and grammar appropriately to communicate in written and spoken forms.	PO1(3)	PSO1(2) PSO3(3)
CO3	Analyze texts in different contexts using appropriate reading strategies.	PO2(2)	PSO2(1)
CO4	Communicate thoughts and ideas in real life situations.	PO9(2)	PSO3(2)
CO5	Develop communication skills relevant to engineering and technology.	PO11(1)	PSO3(3)

CSSECOS	Computer Programming: Buthon	L	Т	Р	С
CS25C02	Computer Programming: Python	2	0 2	2	3

- To equip engineering students with the foundational knowledge and practical skills in Python programming to analyse and solve computational problems effectively.
- To foster problem-solving, critical thinking, and modular programming skills essential for engineering domains.

Introduction to Python: Problem Solving, Problem Analysis Chart, Developing an Algorithm, Flowchart and Pseudocode, Interactive and Script Mode, Indentation, Comments, Error messages, Variables, Reserved Words, Data Types, Arithmetic operators and expressions, Built-in Functions, Importing from Packages.

Practical: Problem Analysis Chart, Flowchart and Pseudocode Practices. (Minimum three)

Control Structures: if, if-else, nested if, multi-way if-elif statements, while loop, for loop, nested loops, pass statements.

Practical: Usage of conditional logics in programs. (Minimum three)

Functions: Hiding redundancy, complexity; Parameters, arguments and return values; formal vs actual arguments, named arguments, Recursive & Lambda Functions.

Practical: Usage of functions in programs. (Minimum three)

Strings & Collections: String Comparison, Formatting, Slicing, Splitting, Stripping, Lists, tuples, and dictionaries, basic list operators, searching and sorting lists; dictionary literals, adding and removing keys, accessing and replacing values.

Practical: String manipulations and operations on lists, tuples, sets, and dictionaries. (Minimum three)

File Operations: Create, Open, Read, Write, Append and Close files. Manipulating directories, OS and Sys modules, reading/writing text and numbers, from/to a file; creating and reading a formatted file (csv, tab-separated, etc.).

Practical: Opening, closing, reading and writing in formatted file format and sort data. (Minimum three)

Packages: Built-in modules, User-Defined modules, Numpy, SciPy, Pandas, Scikit-learn.

Practical: Usage of modules and packages to solve problems. (Minimum three), Project (Minimum Two)

Weightage: Continuous Assessment: 50%, End Semester Examinations: 50%

Assessment Methodology: Quiz (5%), Project (15%), Assignment Programs (25%), Practical (25%), Internal Examinations (30%)

References:

- 1. Matthes, E. (2019). Python crash course: A hands-on, project-based introduction to programming. No Starch Press.
- 2. Brown, M. C. (2018). Python: The complete reference. McGraw Hill Publishers.
- 3. Guttag, J. V. (2016). Introduction to computation and programming using Python: With applications to understanding data . MIT Press.
- 4. McKinney, W. (2017). Python for data analysis: Data wrangling with pandas, NumPy, and IPython. Shroff/O'Reilly.

E-resources:

- 1. Official Python Documentation https://docs.python.org/3/
- 2. Python Tutorials https://www.w3schools.com/python/
- 3. NumPy https://numpy.org/doc/
- 4. SciPy https://scipy.org/
- 5. Google's Python class https://developers.google.com/edu/python/

	Description of CO	РО	PSO
CO1	Explain the potential usage of Python in engineering applications		
CO2	To apply the concepts of Python in solving engineering problems and formulate new projects.	PO1 (2) PO5 (2)	PSO2(2) PSO3(1)
CO3	To interpret the data and effectively communicate in groups.	PO2 (3) PO8 (1) PO9 (1)	PSO3(1) PSO3(2)
CO4	Adapt new programming concepts and technologies in the profession.	PO11 (1)	PSO2(2)

ME25C04	Makerspace	L T	Р	С	
ME25C04	WakerSpace	0	0	4	2

- 1. To impart practical skills in the assembly, disassembly, and welding of components using appropriate tools and techniques.
- 2. To provide hands-on training in electrical wiring practices, and the use of electronic components, sensors, and actuators.

List of Activities

(A). Dis-assembly & Assembly Practices

- i. Tools and its handling techniques.
- ii. Dis-assembly and assembly of home appliances Grinder Mixer Grinder, Ceiling Fan, Table Fan & Washing Machine.
- iii. Dis-assembly and assembly of Air-Conditioners & Refrigerators.
- iv. Dis-assembly and assembly of a Bicycle.

(B). Welding Practices

- i. Welding Procedure, Selection & Safety Measures.
- ii. Power source of Arc Welding Gas Metal Arc Welding & Gas Tungsten Arc Welding processes.
- iii. Hands-on session of preparing base material & Joint groove for welding.
- iv. Hands-on session of MAW, GMAW, GTAW, on Carbon Steel & Stainless Stell plates / pipes, for fabrication of a simple part.

(C). Electrical Wiring Practices

- i. Electrical Installation tools, equipment & safety measures.
- ii. Hands-on session of basic electrical connections for Fuses, Miniature Circuit Breakers and Distribution Box.
- iii. Hands-on session of electrical connections for Lightings, Fans, Calling Bells.
- iv. Hands-on session of electrical connections for Motors & Uninterruptible Power Supply.

(D). Electronics Components / Equipment Practices

- i. Electronic components, equipment & safety measures.
- ii. Dis-assembly and assembly of Computers.
- iii. Hands-on session of Soldering Practices in a Printed Circuit Board.
- iv. Hands-on session of Bridge Rectifier, Op-Amp and Transimpedance amplifier.
- v. Hands-on session of integration of sensors and actuators with a Microcontroller.
- vi. Demonstration of Programmable Logic Control Circuit.

(E). Contemporary Systems

- i. Demonstration of Solid Modelling of components.
- ii. Demonstration of Assembly Modelling of components.
- iii. Fabrication of simple components / parts using 3D Printers.
- iv. Demonstration of cutting of wood / metal in different complex shapes using Laser Cutting Machine.

- 1. Stephen Christena, Learn to Weld: Beginning MIG Welding and Metal Fabrication Basics, Crestline Books, 2014.
- 2. H. Lipson, Fabricated The New World of 3D Printing, Wiley, 1st edition, 2013.
- 3. Code of Practice for Electrical Wiring Installations (IS 732:2019)

	Description of CO	РО	PSO
CO1	Demonstrate proper use and handling of basic hand and power tools.		
CO2	Carry out electrical wiring installations and repairs, applying safety measures in domestic applications.	PO1(3)	PSO2(1)
CO3	Develop solid innovative models through software.	PO5(2)	PSO2(2)
CO4	Adapt and follow safety protocols in the work environment.	PO11(2)	PSO3(2)

UC25AU1 Life Skills for Engineers - L	L	Т	Р	С	
OCZOAUI	End Oking for Engineers	1	0	2	1

- To equip engineering students with essential life skills encompassing personal and emotional development, effective management of time and stress, financial literacy, digital safety, and civic responsibility.
- To enhance self-awareness, interpersonal skills, and resilience to prepare students for the professional and personal challenges of engineering careers and life beyond academics.

Personal and Emotional Development: Self-Awareness & Personality, Emotional Intelligence & Empathy, Positive thinking, Right attitude, Stress & Anger Management, Goal-Setting & Time Management, Growth Mindset & Resilience.

Activities: Personality tests (MBTI, DISC), reflection journals, Empathy circle, role-playing difficult conversations, Guided mindfulness sessions, stress relief toolkit creation, Vision board creation, weekly time audit and planner, Group challenge scenarios, resilience journal

Management Skills: Financial Literacy: Budgeting & Saving, Nutrition, Health, and Hygiene, Digital Literacy & Online Safety, Civic Responsibility & Ethics

Activities: Create a monthly budget, financial simulation game, Meal planning workshop, physical wellness challenge, Social media audit, privacy and safety scenarios, Community service, values debate.

Weightage: Continuous Assessment: 100%

Assessment Methodology: Assignments (20%), Flipped Class & Worksheets (10%), Practical (30%), Internal Examinations (40%)

- 1. Khera, S. (2003). You can win. Macmillan.
- 2. Levesque, H. (n.d.). Life skills 101: A practical guide to leaving home and living on your own. (Publication year not specified)
- 3. Mitra, B. K. (2017). Personality development & soft skills (3rd impression). Oxford University Press.
- 4. ICT Academy of Kerala. (2016). Life skills for engineers. McGraw Hill Education (India) Private Ltd.

	Description of CO	РО	PSO1
CO1	Understand personality traits and emotional intelligence, in interpersonal interactions.		
CO2	To work and execute as a team through successful implementation of set goals.	PO7 (1) PO8 (2) PO9 (2)	PSO3(2)
CO3	Develop and implement best practices in day-to-day life, in terms of planning and execution.	PO11 (3)	PSO3(2)

IIC25A02 Dhysical Education	L	Т	Р	С	
UC25AU2	Physical Education - I	0	0 4	4	1

- To impart the fundamentals of physical education for development of students' physical, mental, and social well-being.
- To instill a lifelong appreciation for physical activity towards the development of positive attitude and fostering values of team work and sportsmanship.

Introduction to physical education: Exercise for Good Posture – Conditioning and Calisthenics for Before start, Jogging, Bending, Twisting, Standing, Sitting and Relaxation, Training on First Aid Practices.

Participation of athletic events: Rules and regulations of important athletic events, Sprint, Jumps, Throws and Hurdles.

Skill development in any one of the following outdoor games: Basket Ball, Volley Ball, Ball Badminton, Football, Hockey, Kho-Kho, Kabaddi, Cricket, Hand ball and Tennis.

Skill development in any one of the following indoor games: Shuttle Badminton, Chess and Table Tennis.

Weightage: Continuous Assessment: 100%

Assessment Methodology: Attendance (60%), Quiz (10%), Participation in Sports and Games (20%) and Viva Voce (10%)

References:

- 1. Singh, A. (2008). Essentials of physical education. Kalyani Publishers.
- 2. Kamlesh, M. L. (2006). Psychology in physical education and sport (3rd ed.). Metropolitan Book Co.
- 3. Mangal, S. K. (2009). *Psychology of sports performance*. Sports Publication.

E-resources:

https://www.who.int/health-topics/physical-activity

	CO Description	РО	PSO
CO1	Understand and explain the importance of physical activity for mental and physical health.		
CO2	Apply basic principles of exercise science in the routine life.	PO1(3)	PSO1(1)
CO3	Develop teamwork, discipline, and leadership through sports and group activities and collaborate effectively.	PO8(3)	PSO3(2)
CO4	Demonstrate independent learning in health, nutrition, and fitness-related topics.	PO11(2)	PSO3(2)

Semester II

MA25C02 Linear Algebra	L	Т	Р	С
	Elliour Algobia	3	1	0

- To impart foundational knowledge in linear algebra essential for analysing and solving problems in engineering applications.
- To provide the knowledge on computation using software and interpret key linear algebra concepts using software.

Vector Spaces Introduction to Vector Spaces, Examples, Subspaces, Linear Combinations, Span, Generating Sets, Linear Dependence and Independence, Basis and Dimension, Dimension of Subspaces.

Activities: Open-Source software, exercises to test linear dependence and independence using rank, compute span and basis of a set of vectors, determine the dimension of subspaces, and illustrate the concept of subspace and basis in R^2/R^3 with visualization.

Linear Transformations and Diagonalization: Null space, Range, Dimension Theorem (statement only), Matrix representation of a linear transformation, Eigenvalues & Eigenvectors, Diagonalizability.

Activities: Open-Source software, exercises to compute the matrix representation of a linear transformation, find the null space and range of a matrix, and compute eigenvalues and eigenvectors of a matrix.

Inner Product Spaces: Inner product, Norms, Cauchy, Schwarz inequality, Gram, Schmidt orthogonalization, Simple problems (up to R^3).

Activities: Open-Source software, exercises to compute inner products and vector norms.

Matrix Decomposition: Orthogonal transformation of a symmetric matrix to diagonal form - Positive definite matrices, QR decomposition, Singular Value Decomposition (SVD), Least squares solutions- simple problems (up to 3×3 *matrices*).

Activities: Open-Source software, exercises to check if a matrix is positive definite, perform QR decomposition and SVD using built-in functions.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%.

Assessment Methodology: Assignment (20%), Software activity (20%), Quiz (20%), Internal Examinations (50%).

- 1. Friedberg, S. H., Insel, A. J., & Spence, L. E. (2022). Linear algebra. Pearson.
- 2. Lay, D. C., Lay, S. R., & McDonald, J. J. (2020). Linear algebra and its applications with MATLAB. Pearson.
- 3. Bronson, R. (2011). Schaum's outline of matrix operations. McGraw-Hill Education.
- 4. Strang, G., & Thomson, R. (2005). Linear algebra and its applications. Brooks/Cole.

- 5. Lipschutz, S., & Lipson, M. (2009). Schaum's outline of linear algebra. McGraw-Hill.
- 6. Kreyszig, E. (2018). Advanced engineering mathematics. Wiley India.

	Description of CO	РО	PSO
CO1	Explain the fundamental concepts of Linear Algebra.		
CO2	Compute and interpret eigenvalues and eigenvectors.	PO1(3)	PSO1(2)
CO3	Apply inner product concepts and perform orthogonalization.	PO1 (3)	PSO1(1)
CO4	Compute least squares solutions of linear system	PO1 (2)	PSO3(1)
CO5	of equations. Use MATLAB to implement and validate key	PO2 (2) PO5 (1)	DSO2(2)
005	linear algebra concepts	PO11 (1)	PSO2(2)

ME25C02 Engineering Mechanics	L	T	Ρ	С
	Engineering Mechanics	3	1	1 0

- To introduce the fundamental concepts and principles of statics related to forces acting on particles and rigid bodies.
- To develop the ability to formulate and apply equilibrium equations for particles and rigid bodies in two and three dimensions.
- To enable students to analyse force systems through vector resolution and calculation of moments and couples.

Statics of Particles: Resultant of forces in a plane, Equilibrium of a particle in a plane, Addition of concurrent forces in space, Equilibrium of a particle in space.

Activities: Assignments and Quiz on resultant forces, Solving of GATE questions.

Statics of Rigid Bodies: Concept of Free Body Diagram, Equivalent systems of forces, Transmissibility, Moment of a force about a point and an axis, Couples and force-couple systems, Equilibrium of rigid bodies in two and three dimensions, Principle of virtual work.

Activities: Virtual demonstration of rigid bodies, Solving of GATE questions.

Moments of Inertia: First moments of areas and lines, Centroids of composite areas and lines, Theorems of Pappus-Guldinus, Second moment of area, Parallel axis theorem, Rectangular and Polar Moments of inertia of composite areas, Radius of Gyration, Product of Inertia, Principal Axes and Principal Moments of Inertia, Mass moments of inertia of thin plates.

Activities: Virtual Simulation of Moment of Inertia, Principal Axes Determination, Solving of GATE questions.

Friction: Laws of friction, Coefficients of Friction, Angles of Friction, Types of Friction Problems, Wedges and Ladder friction, Belt friction.

Activities: Virtual Demonstration of Friction in belts and pulleys, Solving of GATE questions

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz - 10%, Assignments - 20%, Solving of GATE questions (20%) and Internal Examinations - 50%

- 1. Beer, F. P., Johnston Jr., E. R., DeWolf, J. T., & Mazurek, D. F. (2015). Mechanics of Materials. McGraw-Hill Education.
- 2. Meriam, J. L., & Kraige, L. G. (2018). *Engineering Mechanics: Statics and Dynamics*. Wiley.

3. Pytel, A., & Kiusalaas, J. (2014). Engineering Mechanics (Indian Edition). Cengage Learning India.

- 1. Moment of Inertia Calculator https://skyciv.com/free-moment-of-inertia-calculator/
- 2. OpenStax University Physics Volume 1 https://openstax.org/books/university-physics-volume-1/pages/10-4-moment-of-inertia-and-rotational-kinetic-energy
- 3. Engineering Mechanics, Dr. Dwarakish. G. S. https://onlinecourses.swayam2.ac.in/ntr24_ed75/preview

	CO Description	РО	PSO
CO1	Explain the principles of statics in determination of forces acting on particles and rigid bodies.		
CO2	Apply equilibrium conditions to predict the behaviour of particles and rigid bodies under various force configurations	PO1(3)	PSO1(3)
CO3	Analyse various systems through resolution of forces and moments.	PO2(2)	PSO1(2)
CO4	Demonstrate the ability to engage in adapting new techniques in the analysis of force and moments in a system.	PO11(1)	PSO2(2) PSO3(1)

PH25C02	L	Т	Р	С
		2	1	0

 To provide a comprehensive understanding of physics concepts in Civil engineering applications.

Mechanic: Elasticity – Types of supports and loads – free body diagrams - Equilibrium of rigid bodies – Types of structures: Beams, frames, trusses – Analysis of trusses – internal forces in members – Moment of inertia and bending- cantilever

Activities: Virtual Demonstration of deflection of beams and moment of inertia.

Acoustics: Reverberation – Loudness – Focusing – Echelon – Noise – Echo - Resonance – Interference – Sabine's formula (Derivation) – Absorption coefficient – Sonometer - Sound insulation.

Activities: Virtual Demonstration of sound insulation and resonance.

Lighting: Visual field glare, colour – day light calculations – day light design of windows, measurement of day light and use of models and artificial skies - artificial lighting – LED characteristics.

Activities: Virtual Demonstration of heat infiltration in glass, glass as building material, LED Characteristics.

Engineering Materials: Composites – Fibre Reinforced Plastics (FRP) – Fiber Reinforced Metals (FRM) – Fiber Reinforced Bricks (FRB) - Shape memory alloys – Ceramics – Thermal, Mechanical, Electrical and Chemical properties –3D printed construction materials - Nano materials.

Activities: Demonstration of 3D printing of materials, Composite fabrication.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz (10%), Assignments (30%), Flipped Class (10%), Internal Examinations (50%)

- Balasubramaniam, R. (2014). Callister's materials science and engineering. Wiley India Pvt. Ltd.
- 2. Hibbeler, R. C. (2017). Engineering mechanics. Pearson.
- 3. Hibbeler, R. C. (2023). Structural analysis. Pearson.
- 4. Medved, S. (2021). Building physics. Springer.

- 1. Moment of Inertia: https://youtu.be/fDJeVR0o__w
- 2. Ceramics: https://www.youtube.com/watch?v=oeDANQrsnZ0
- 3. Sound Insulation: https://youtu.be/nhE2a4GEOtA
- 4. Shape memory alloys: https://nescacademy.nasa.gov/video/00a31561480547248033a1c2df6f87831d
- 5. White LED: https://archive.nptel.ac.in/courses/108/108/108108122/
- 6. Daylighting and lighting design: https://youtu.be/vZO09qL-vZs
- 7. 3D Printed construction materials https://www.youtube.com/watch?v=UntRnpuWBtU

	Description of CO	РО	PSO
CO1	Explain the concepts of physics in civil engineering stream.		
CO2	Apply appropriate techniques in physics to solve engineering problems.	PO1(3)	PSO1(3)
CO3	Analyse physical systems and interpret data from the virtual studies in the core branches in civil engineering.	PO2(2)	PSO1(2)

EE25C01Basic Electrical and Electronics EngineeringLTPC3003

Course Objectives:

• To impart foundational knowledge in principles and applications of electrical and electronics engineering.

DC Fundamentals: Current and Voltage sources, Resistance, Inductance and Capacitance; Ohm's law, Kirchhoff's law, Series parallel combination of R, L and C components, Voltage Divider and Current Divider Rules.

Activities: Virtual Demonstration of electrical laws & circuits, Hands-on Breadboarding, Solving GATE questions.

AC Fundamentals: Faraday's Laws of Electro-magnetic Induction, Definition of Self and Mutual Inductances, Generation of sinusoidal voltage, Instantaneous & RMS values of sinusoidal signals, Introduction to 3-phase systems, Electrical Safety, Fuses and Earthing.

Activities: Virtual Demonstration of electromagnetic induction, Measurement of instantaneous and RMS values of AC signals, Solving GATE questions.

Electric Machines: DC Machines, Transformers, Star and delta Connections, Three phase Induction motors, Synchronous Generators, Single Phase Induction Motors, Stepper Motor, Universal Motor and BLDC motor.

Activities: Virtual demonstration of step-up and step-down transformers, Virtual working models of Universal and BLDC motors, Solving GATE questions.

Semiconductor Devices: PN junction diodes, Zener Diode, Voltage regulator, BJT & FET Transistors, Timers, Operational Amplifiers.

Activities: Virtual demonstration of V-I characteristics of PN junction and Zener diodes using simulation, inverting/non-inverting amplifiers, Solving GATE questions.

Digital Electronics: Boolean algebra, Basic and Universal Gates, adders, multiplexers, demultiplexers and flip-flops.

Activity: Online logic gate simulators, Solving GATE questions.

Microcontrollers: Introduction, Architecture, Potential Applications.

Activities: Physical demonstration of a microcontroller and online simulation of microcontroller.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz (5%), Assignments (25%), GATE Questions (20%), Internal Examinations (50%)

References:

- 1. Del Toro, V. (2022). Electrical engineering fundamentals. Pearson Education.
- 2. Hambley, A. R. (Year). Electrical engineering: Principles and applications (Edition if known). Publisher.(Note: Please provide the year and edition for complete citation)
- 3. Mehta, V. K., & Mehta, R. (2006). Principles of electrical engineering and electronics. S. Chand Publishing.

- 1. https://archive.nptel.ac.in/courses/108/106/108106172/
- 2. Circuit Simulator https://www.falstad.com/circuit/

	Description of CO	РО	PSO
CO1	Understand and explain basic electrical and electronic concepts.		
CO2	Apply and analyse electrical circuits in real-time applications.	PO1 (3) PO2 (1)	PSO1(2)
CO3	Identify and utilise key electronic devices used in engineering applications	PO2 (2)	PSO1(2)

CY25C02 Applied Chemistry (CE) – II L T P C 2 0 0 2

Course Objectives

To provide comprehensive understanding of chemistry concepts in building materials.

Building Materials: Introduction, Bricks, Glass, Cement, Special Cement, Concrete, Reinforcement.

Activities: Virtual demonstration of properties of building materials.

Composites: Types, Matrix materials, Hybrids, Fiber Reinforcement, Characteristics, PMC, MMC, CM Applications.

Activities: Virtual demonstration of fabrication of composite materials.

Sustainable Materials: Bio-based materials, Product & Technology development, Admixtures, Environmental aspects, energy efficiency.

Activities: Calculation of carbon footprint in buildings.

Analytical Methods: Thermal conductivity, porosity, absorption and emission characteristics of building materials.

Activities: Analytical methods with virtual experiments, Hands-on demonstration of any one of the methods.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz (5%), Assignments (20%), Flipped Class (5%), Virtual Practice (20%), Internal Examinations (50%)

References:

- 1. Jain, P. C., & Jain, M. (2022). Engineering chemistry. Dhanpat Rai Publishing Company (P) Ltd.
- 2. Eckold, G. (1994). Design and manufacture of composite structures. Woodhead Publishing Ltd.
- 3. Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (2022). Fundamentals of analytical chemistry (10th ed.). Cengage Learning India Pvt. Ltd.
- 4. Spitzer, W. G., & Simonson, K. (2011). Green building materials: A guide to product selection and specification. Wiley

- 1. https://archive.nptel.ac.in/courses/112/104/112104229/
- 2. https://nptel.ac.in/courses/103108100

	Description of CO	РО	PSO
CO1	Explain the applications of chemistry in civil engineering stream.		
CO2	Apply chemistry concepts to select appropriate materials.	PO1(3)	PSO1(2)
CO3	Analyse the systems and interpret data from the virtual studies in the field of civil engineering.	PO2(2)	PSO2(2) PSO3(1)

LICOFUOD		L	Т	Р	С
UC25H02	தமிழர்களும் தொழில்நுட்பமும்	1	0	0	1

நெசவு மற்றும் பானைத் தொழில்நுட்பம்: சங்க காலத்தில் நெசவுத் தொழில், பானைத் தொழில்நுட்பம், கருப்பு சிவப்பு பாண்டங்கள், பாண்டங்களில் கீறல் குறியீடுகள்.

வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்: சங்க காலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க காலத்தில் வீட்டுப் பொருட்களில் வடிவமைப்பு, சங்க காலத்தில் கட்டுமான பொருட்களும் நடுகல்லும் – சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள், மாமல்லபுரச் சிற்பங்களும், கோவில்களும், சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் – நாயக்கர் காலக் கோயில்கள், மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் – செட்டிநாட்டு வீடுகள், பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோ, சாரோசெனிக் கட்டிடக் கலை.

உற்பத்தித் தொழில் நுட்பம்: கப்பல் கட்டும் கலை, உலோகவியல், இரும்புத் தொழிற்சாலை, இரும்பை உருக்குதல், எஃகு, வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள், நாணயங்கள் அச்சடித்தல், மணி உருவாக்கும் தொழிற்சாலைகள், கல்மணிகள், கண்ணாடி மணிகள், சுடுமண் மணிகள், சங்கு மணிகள், எலும்புத்துண்டுகள், தொல்லியல் சான்றுகள், சிலப்பதிகாரத்தில் மணிகளின் வகைகள்.

வேளாண்டை மற்றும் நீர்ப்பாசனத் தொழில் நுட்பம்: அணை, ஏரி, குளங்கள், மதகு, சோழர்காலக் குமுழித் தூம்பின் முக்கியத்துவம், கால்நடை பராமரிப்பு, கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள், வேளாண்மை மற்றும் வேளாண்மைச் சார்ந்த செயல்பாடுகள், கடல்சார் அறிவு, மீன்வளம், முத்து மற்றும் முத்துக்குளித்தல், பெருங்கடல் குறித்த பண்டைய அறிவு, அறிவுசார் சமூகம்.

அறிவியல் தமிழ் மற்றும் கணித்தமிழ்: அறிவியல் தமிழின் வளர்ச்சி, கணித்தமிழ் வளர்ச்சி, தமிழ் நூல்களை மின்பதிப்பு செய்தல், தமிழ் மென்பொருட்கள் உருவாக்கம், தமிழ் இணையக் கல்விக்கழகம், தமிழ் மின் நூலகம், இணையத்தில் தமிழ் அகராதிகள், சொற்குவைத் திட்டம்.

- தமிழக வரலாறு, மக்களும் பண்பாடும், கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை, ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

UC25H02	Tamile and Tachnology	L	Т	Р	С
UC25HU2	Tamils and Technology	1	0	0	1

Weaving and Ceramic Technology: Weaving Industry during Sangam Age, Ceramic technology, Black and Red Ware Potteries (BRW), Graffiti on Potteries.

Design and Construction Technology: Designing and Structural construction House & Designs in household materials during Sangam Age, Building materials and Hero stones of Sangam age, Details of Stage Constructions in Silappathikaram, Sculptures and Temples of Mamallapuram, Great Temples of Cholas and other worship places, Temples of Nayaka Period, Type study (Madurai Meenakshi Temple), Thirumalai Nayaka rMahal, Chetti Nadu Houses, Indo, Saracenic architecture at Madras during British Period.

Manufacturing Technology: Art of Ship Building, Metallurgical studies, Iron industry, Iron smelting, steel, Copper and gold Coins as source of history - Minting of Coins, Beads making, industries Stonebeads, Glass beads, Terracotta beads, Shell beads / bone beats, Archeological evidences, Gem stone types described in Silappathikaram.

Agriculture and Irrigation Technology: Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompuof Chola Period, Animal Husbandry - Wells designed for cattle use, Agriculture and Agro Processing -Knowledge of Sea -Fisheries, Pearl, Conche diving, Ancient Knowledge of Ocean -Knowledge Specific Society.

Scientific Tamil & Tamil Computing: Development of Scientific Tamil, Tamil computing, Digitalization of Tamil Books, Development of Tamil Software, Tamil Virtual Academy, Tamil Digital Library, Online Tamil Dictionaries, Sorkuvai Project.

- 1. தமிழக வரலாறு, மக்களும் பண்பாடும், கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ், முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி, வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை, ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils, The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi , 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

CE25204	Construction Metarials and Tachnology	L	Т	Р	С
CE25201	Construction Materials and Technology	3	0	0	3

- To impart fundamental knowledge of traditional and modern building materials used in construction.
- To introduce methods of construction such as masonry, formwork, scaffolding, plastering, and joints.

Stones, Bricks and Concrete Blocks: Stone as building material, Criteria for selection, Tests on stones, Deterioration and preservation of stonework. Bricks, Classification, Manufacturing of clay bricks, Tests on bricks, Compressive strength, Water absorption, Efflorescence, Bricks for special uses, Refractory bricks. Concrete blocks, Types, Hollow and solid blocks, Lightweight concrete blocks, Applications.

Activities: Visit to brick / block manufacturing plant.

Lime, Cement, Aggregates and Mortar: Types, Preparation of lime mortar, Applications. Cement, Ingredients, Manufacturing process, Types and grades, Properties: hydration, compressive and tensile strength, soundness, consistency, setting time. Fine aggregates, River sand, crushed stone sand (M and P-Sand), Properties. Coarse aggregates, Crushing strength, impact strength, flakiness and elongation index, abrasion resistance, Grading. Mortar, Cement and lime mortars, Uses and proportions.

Activities: Virtual Demonstration of Cement Manufacturing.

Timber, Metals and Other Materials: Timber, Market forms, Industrial timber, Plywood, Laminated panels. Metals, Steel, Aluminum, Composition, properties, Market forms, Mechanical treatment, Aluminum composite panels. Surface finishes, Paints, Varnishes, Distempers, Bituminous products. Sealants for joints, Insulating materials, Acoustic and thermal insulation, Fire protection, Damp proofing, Ventilation, Air conditioning.

Construction Technology and Construction Practices: Masonry construction, Brick and stone masonry. Formwork, Centering, shuttering, Scaffolding, Shoring, Underpinning. Construction joints, Contraction, construction and expansion joints. Plastering, Pointing, Cavity and diaphragm walls.

Activities: Virtual Demonstration of different types of masonry works.

Advanced Materials: Advanced materials, Glass, Solar Panels - Ceramics, Clay products, Refractories, Fibre reinforced plastics, Fibre textiles, Geomembranes, Geotextiles. Composite materials, Types, Laminar composites, Applications in construction.

Activities: Visit to Construction sites, virtual demonstration of FRP.

Construction Equipment and Planning: Construction equipment, Selection for earthwork, concreting, material handling, dewatering and pumping. Construction planning.

Activities: Case Study in Concrete Mixing Plan.

Weightage: Continuous Assessment: 40%, End Semester Examinations: 60%

Assessment Methodology: Quiz (10%), Assignments (40%) and Internal Examinations (50%)

- 1. Varghese, P. C. (2015). Building materials. PHI Learning Pvt. Ltd.
- 2. Arora, S. P., & Bindra, S. P. (2013). Building construction. Dhanpat Rai Publications.
- 3. Punmia, B. C. (2008). Building construction. Laxmi Publications Pvt. Ltd.
- 4. Peurifoy, R. L., Schexnayder, C. J., Shapira, A., & Schmitt, R. (2011). Construction planning, equipment and methods. Tata McGraw-Hill.
- 5. Srinath, L. S. (2001). PERT and CPM: Principles and applications. Affiliated East-West Press.
- 6. Rangwala, S. C. (2017). Building materials. Charotar Publishing House Pvt. Ltd.

CO	CO Description	PO Mapping	PSO
CO1	Explain the properties, classifications, and applications of conventional and advanced building materials.		
CO2	Evaluate the quality and suitability of stones, bricks, cement, lime, aggregates, and mortar using standard tests.	PO1(3) PO2(2)	PSO1(2)
СОЗ	Apply knowledge of construction practices such as masonry, formwork, scaffolding, joints, and finishes in building works.	PO2(2) PO4(2)	PSO2(2)
CO4	Utilize construction planning techniques (CPM, PERT, network models) and equipment selection for effective project execution.	PO2(2) PO4(2)	PSO2(3) PSO3(1)

ENGCOO	L	Т	Р	С	
EN25C02	English Essentials – II	1	0	2	2

- Enable learners to improve fluency and accuracy in spoken and written communication.
- Develop learners' ability to articulate ideas clearly and effectively in formal and informal spoken interactions.
- Help learners construct well-organised written documents relevant to academic and workplace contexts.

Oral Communication: Types (Verbal and Nonverbal), Interpersonal and group communication, Telephonic conversation.

Suggested Activities: Short presentations, Debates, Formal Speeches (Welcome, Vote of Thanks and introducing guests), Listen and respond to short podcasts.

Business Correspondence: Email Communication, Formal Letters (Types), Business Meeting.

Suggested Activities: Email and letter writing (Complaint, request, permission), Agenda, minutes of the meeting.

Academic Writing: Paraphrasing, Summarizing, Essay Writing, Instructions and Recommendations.

Suggested Activities: Essay writing (Cause and effect, argumentative, persuasive), User guides/ manuals, policy document.

Team Work: Leadership Skills (Team building, Team Leader, Team player), Negotiation and Problem solving skills

Suggested Activities: SWOT Analysis, Brainstorming and Group discussions.

Weightage: Continuous Assessment: 50%, End Semester Examinations: 50%

Assessment Methodology: Worksheets (10%), Group Activity (20%), Report Writing (20%), Internal Examinations (50%)

References:

- 1. Koneru Aruna. (2020). English Language Skills for Engineers. McGraw Hill Education.
- 2. Taylor, Shirley & Chandra .V. (2010). Communication for Business A Practical Approach. India: Pearson Longman.
- 3. Ian Badger, et al., (2014). Listening: B2 (Collins English for Life: Skills), Collins.
- 4. Raymond Murphy (2019), Grammar in Use, Cambridge University Press.

- Communication for Business Success https://open.umn.edu/opentextbooks/textbooks/8
- 2. TED Talks https://www.ted.com/

	Description of CO	РО	PSO
CO1	Understand the importance of communication and drafting skills in engineering and technology.		
CO2	Apply listening strategies to comprehend spoken English in various contexts.	PO1(3)	PSO3(2)
CO3	Participate actively in group discussions by analysing critically from different views.	PO2(2) PO8(1)	PSO3(3)
CO4	Create written reports coherently for various purposes.	PO9(2)	PSO3(2)
CO5	Adapt communication styles to global, multicultural environments.	PO11(1)	PSO2(2)

MESECOE	Do Engineering for innevention	L	Т	Р	О
WEZ3CU5	Re-Engineering for innovation	0	0 0	4	2

- To cultivate foundational skills in prototyping, and automation for development of prototypes with real-world applications.
- To provide a comprehensive, hands-on exposure to product development through reverse engineering concepts.

Bootcamp 1: Introduction to Product Development, Reverse Engineering, Overview of the product lifecycle, Hands-on disassembly of simple products, Practice of basic measurements and sketching, Introduction to CAD modeling of disassembled parts, Virtual assembly of parts.

Bootcamp 2: Embedded System Programming (Open-source platforms), Practice of interfacing sensors, reading data, automation in home, healthcare and agriculture.

Reverse Engineering: Sketch and prototype alternative designs, Group brainstorming sessions, Manufacture prototype parts using 3D printing and / or workshop tools, Assemble prototype product.

Weightage: Continuous Assessment: 60%, End Semester Examinations: 40%

Assessment Methodology: Project (30%), Assignment (10%), Practical (30%), Internal Examinations (30%)

References:

- 1. Wang, W. (2010). Reverse engineering: Mechanisms, structures, systems & materials. CRC Press.
- 2. Margolis, M. (2020). Arduino cookbook: Recipes to begin, expand, and enhance your projects. O'Reilly Media.

- 1. GrabCAD https://grabcad.com/
- 2. GitHub https://github.com/

	Description of CO	РО	PSO
CO1	Understand the product development lifecycle, including stages such as concept generation, design, prototyping, and testing.		
CO2	Apply reverse engineering techniques to analyze and document existing products.	PO1 (3) PO2 (2)	PSO1(2)
CO3	Collaborate in teams to fabricate prototypes using appropriate tools.	PO5 (2) PO8 (1) PO9 (1)	PSO3(3)
CO4	Engage in independent learning and continuously adapt to emerging technologies in product design	PO11(2)	PSO2(2) PSO3(2)

UC25A03	Life Skille for Engineers II	L	Т	Р	С
UC25AU3	Life Skills for Engineers – II	1	0	2	1

 To impart and cultivate analytical reasoning, innovative thinking, effective collaboration, and ethical leadership to prepare students for complex challenges in professional and personal environments.

Critical Thinking: Creativity, Critical Thinking, Collaboration, Problem Solving, Decision Making, Imagination, Intuition, Experience, Sources of Creativity, Lateral Thinking, Myths of creativity, Critical thinking Vs Creative thinking, Convergent & Divergent Thinking, Critical reading & Multiple Intelligence.

Activities: Two-Brainstorm Method, "30 Circles" Challenge, "Desert Survival" Simulation, Lateral thinking riddles and puzzles, "What If?" Scenario Writing, Fast vs. Slow Thinking Game, Creativity Myth Busters

Problem Solving: Techniques, Six Thinking Hats, Mind Mapping, Forced Connections. Analytical Thinking, Numeric, symbolic, and graphic reasoning. Scientific temperament and Logical thinking.

Activities: Case study analysis, Escape Room challenge.

Leadership: Leadership Styles & Self-Assessment, Communication & Active Listening, Decision-Making & Responsibility, Teamwork & Delegation, Empathy, Integrity & Conflict Management, Vision, Motivation & Goal-Setting.

Activities: Crisis Leadership Simulation, Tower Challenge, Leadership Dilemmas Role-Play, Team Vision Board

Weightage: Continuous Assessment: 100%

Assessment Methodology: Assignments (20%), Flipped Class & Worksheets (10%), Practical (30%), Internal Examinations (40%)

- 1. De Bono, E. (2017). Six thinking hats, Little, Brown Book Group.
- 2. Facione, P. A. (2015). Critical thinking: What it is and why it counts. Insight Assessment.
- 3. Kahneman, D. (2011). *Thinking, fast and slow*. Farrar, Straus and Giroux.
- 4. Whetten, D. A., & Cameron, K. S. (2016). Developing management skills. Pearson.

	Description of CO	РО	PSO
CO1	Explain the importance of leadership and management skills in life.		
CO2	Apply and demonstrate creative thinking techniques to generate innovative solutions.	PO7 (3)	PSO1(1) PSO2(1)
CO3	Exhibit effective collaboration and communication skills through teamwork, active listening, and conflict resolution strategies.	PO8 (2)	PSO3(3)
CO4	Integrate scientific temperament and logical reasoning into c problem solving in engineering and real-world contexts.	PO11 (2)	PSO2(1) PSO3(2)

UC25A04 Physical Education II	L	Т	Р	С	
UC25A04	Physical Education - II	0	0	4	1

 To impart knowledge on gymnastic exercises and pressing needs for upskilling in a particular game.

Basic gymnastics exercises: Warming up, Suitable exercise, Lead up games, Safety education, Movement education, Balanced Walk, execution, floor exercise, tumbling/acrobatics, grip, release, swinging, parallel bar exercise, horizontal bar exercise, flic-flac-walk and pyramids.

Upskilling in any one of the athletics: Broad Jump, High Jump, Triple Jump, Relay Sprints, Javelin Throw, Discuss Throw, Shot Put, Short and Long-distance Running.

Advance skills in any one of the indoor/outdoor games, which has been opted by the student in the I semester.

Weightage: Continuous Assessment: 100%

Assessment Methodology: Attendance (60%), Quiz (10%), Participation in Sports and Games (20%) and Viva Voce (10%)

References:

- 1. Singh, A. (2008). Essentials of physical education. Kalyani Publishers.
- 2. Kamlesh, M. L. (2006). Psychology in physical education and sport (3rd ed.). Metropolitan Book Co.
- 3. Mangal, S. K. (2009). Psychology of sports performance. Sports Publication.
- 4. Kandappan, K. (2004). Foundations of physical education. Friends Publications.

E-resources:

https://www.who.int/health-topics/physical-activity

	CO Description	РО	PSO
CO1	Understand and explain the importance of physical		
	activity for mental and physical health.		
CO2	Apply safety principles and methods during sports	PO1(3)	PSO3(1)
	activities.	. ,	, ,
CO3	Develop teamwork, discipline, and leadership through	PO8 (3)	PSO3(2)
	sports and group activities and collaborate effectively.	, ,	
CO4	Demonstrate the advanced technical skills and	PO11(1)	PSO3(2)
	strategic understanding in the game of their interest.	. ,	

Foreign Language[^]

UC25F01	Doutooh I	L	Т	Р	С
0025F01	Deutsch – I	1	0	2	1

Course Objectives:

• To impart fundamentals of the Deutsch language, including reading, writing systems, pronunciation, and speaking.

Basics & Introduction: German alphabet and pronunciation, Basic greetings and farewells, Introducing yourself and others (Ich heiße..., Wer bist du?), Numbers 1–100 and days of the week, Personal pronouns (ich, du, er, sie...), Sentence structure (SVO word order).

Activities: Alphabet spelling game, short skits, Use color-coded cards for SVO sentences.

Grammar Essentials & Everyday Vocabulary: Present tense of regular verbs (spielen, arbeiten, machen...), Common irregular verbs: sein (to be), haben (to have), gehen, kommen, Articles and gender (der, die, das; ein, eine), Simple questions and negation (nicht, kein), Describing people and things: adjectives and colors, Family, school, food, and common objects vocabulary.

Activities: Conjugate regular and irregular verbs, "Question Chain" game, Create a simple family tree.

Everyday Communication in German: Asking for and giving directions, Telling the time and talking about schedules, Ordering food and drinks at a café or restaurant, Talking about hobbies, weather, and daily routines, Listening to short conversations and responding appropriately, Introduction to German culture and formal/informal language use (du vs Sie).

Activities: Ordering food and drinks, Give directions, Formal / Informal greetings, Do's and Don'ts.

Weightage: Continuous Assessment: 100%

Assessment Methodology: Assignments (30%), Quiz (10%) and Internal Examinations 60%

References:

1. Funk, H., Kuhn, C., & Demme, S. (2015). Menschen A1: Deutsch als Fremdsprache Kursbuch. Hueber Verlag.

	CO Description	РО	PSO
CO1	Understand simple spoken Deutsch in everyday contexts.		
CO2	Communicate with widely used Deutsch words effectively.	PO9 (2)	PSO3(2)
CO3	Develop the skills necessary for self-directed learning and continuous improvement in Deutsch language.	PO11 (1)	PSO3(2)

UC25F02	Jananasa	L	L T	Р	С
UC25FU2	Japanese – I	1	0	2	1

• To impart fundamentals of the Japanese language, including reading, writing systems, pronunciation, and speaking.

Writing Systems & Basic Communication: Introduction to Hiragana: vowels, basic characters, reading & writing, Introduction to Katakana: basic characters and usage, Basic greetings and farewells (こんにちは、おはようございます, さようなら), Introducing yourself (名前、出身、年齢), Basic sentence structure: Subject-Object-Verb, Numbers 1–100, days of the week, classroom expressions.

Activities: Flashcard games and writing drills, Self-introduction, Numbers & date-matching, Greeting expressions, Listening to audio.

Grammar & Everyday Vocabulary: Particles: は (wa),を (wo),の (no),へ (e),に (ni), Present tense verbs:です,ます-form conjugation (たべます、のみます), Negative forms:ではありません、ません、Describing people and objects using adjectives (い and な), Question formation:なに、どこ、だれ、いつ、Vocabulary for family, food, colors, and basic actions.

Activities: Verb conjugation drills, Guessing game, Picture description, "Shopping" with food vocab and counters

Conversation & Cultural Etiquette: Talking about routines and schedules (daily verbs, time expressions), Asking and giving simple directions (~はどこですか?), Ordering food and making polite requests (~をください、~をおねがいします), Expressing likes and dislikes (すき・きらい), Listening to short conversations and identifying key phrases, Introduction to formal/informal speech and Japanese etiquette.

Activities: Skits and role-plays, daily schedule, beginner-level dialogue, Group discussion on etiquette.

Activities: Practice worksheets and flashcards for hiragana, Writing drills and reading simple katakana words, Dialogue practice for greetings and self-introduction, Sentence construction exercises with basic SOV structure, Particle usage exercises and short dialogues, Role-play scheduling, shopping, and telling time, Verb conjugation drills for common verbs, Descriptive sentence exercises using adjectives, Practice Q&A dialogues forming questions and negations, Kanji writing practice and quizzes for basic characters, Vocabulary tests and conversational practice on daily topics, Oral presentations and listening comprehension quizzes.

Weightage: Continuous Assessment: 100%

Assessment Methodology: Assignments (30%), Quiz (10%) and Internal Examinations 60%

- 1. Banno, E., Ikeda, Y., Ohno, Y., Shinagawa, C., & Tokashiki, K. (2011). Genki I: An integrated course in elementary Japanese. The Japan Times.
- 2. The Japan Foundation. (2017). Marugoto Japanese language and culture starter (A1) course book for communicative language activities. Goyal Publishers.

	CO Description	РО	PSO
CO1	Understand simple spoken Japanese in everyday contexts.		
CO2	Communicate with widely used Japanese words effectively.	PO9 (2)	PSO3(2)
CO3	Develop the skills necessary for self-directed learning and continuous improvement in Japanese language.	PO11 (1)	PSO3(2)

IIC25E02	Korean – I	L	Т	Р	С
UC25F03	Notedii – I	1	0	2	1

• To impart fundamentals of the Korean language, including reading, writing systems, pronunciation, and speaking.

Fundamentals of Korean: Introduction to Hangul: consonants and vowels, Basic pronunciation and syllable formation, Common greetings and self-introductions, Numbers (Sino-Korean and Native Korean basics), Basic sentence structure (Subject-Object-Verb), Simple expressions (e.g., 감사합니다, 안녕하세요).

Activities: Writing and reading Hangul practice sheets, Pronunciation drills and audio repetition, Dialogue practice for greetings and self-introduction, Counting and number exercises.

Essential Grammar and Vocabulary: Particles (은/는, 이/가, 을/를) and usage, Basic verbs and present tense conjugation, Sentence patterns: affirmative, negative, interrogative, Common adjectives and descriptive sentences, Expressing possession and location, Asking simple questions (어디, 뭐, 누구).

Activities: Verb conjugation and sentence formation drills, Role-play conversations for shopping and daily routines, Descriptive writing and speaking exercises, Question and answer practice.

Everyday Korean Communication: Polite speech levels and honorifics introduction, Talking about time, dates, and schedules, Ordering food, shopping phrases, counting objects, Simple directions and transportation vocabulary, Listening practice with short dialogues, Cultural notes on etiquette and communication.

Activities: Role-play ordering at a restaurant or buying items, Listening comprehension exercises, Giving and asking for directions practice, Group conversations and presentations.

Weightage: Continuous Assessment: 100%

Assessment Methodology: Assignments (30%), Quiz (10%) and Internal Examinations 60%

- 1. King, R., Yeon, J., & Brown, A. (2015). Elementary Korean. Tuttle Publishing.
- 2. Cho, Y., Lee, H., Schulz, C., Sohn, H.-M., & Sohn, S.-O. (2001). Integrated Korean: Beginning 1. University of Hawai'i Press.

	CO Description	РО	PSO
CO1	Understand simple spoken Korean in everyday contexts.		
CO2	Communicate with widely used Korean words effectively.	PO9 (2)	PSO3(2)
CO3	Develop the skills necessary for self-directed learning and continuous improvement in Korean language.	PO11 (1)	PSO3(2)